area-restrita.png
e-mail-1.png

Numatsmail

27_03_pep_botao_facebook.jpg27_03_pep_botao_instagram.jpg27_03_pep_botao_facebook.jpg27_03_pep_botao_facebook.jpg

Autor(a/res): Jo Dweck, Maura Berger Maltez Melchert, Frank K. Cartledge, Rosangela Silva Leonardo e Romildo Dias Toledo Filho. 

Resumo: The capture of CO2 and SO2 from industrial gas effluents has been done usually by lime-containing products. For this purpose, cement pastes also can be used, due mainly to their calcium hydroxide content formed during hydration. To select the best cement for this purpose, TG and DTG curves of different Portland cement pastes (types I, II, III and G), prepared with a water-to-cement ratio (W/C) equal to 0.5, were analyzed at different ages, at same operating conditions. The curves were transformed into respective cement calcined and initial mass basis, to have a common and same composition reference basis, for a correct quantitative hydration data comparison. This procedure also shows that there is an unavoidable partial drying effect of the pastes before starting their analysis, which randomly decreases the W/C ratio at which were prepared, which indicates that, when results are compared on respective paste initial mass basis, assuming that the ratio W/C has not changed, possible calculation errors may be done. Type I, II and G analyzed cements have shown similar hydration characteristics as a function of time, while the analyzed type III cement has shown a different hydration behavior, mainly due to its highest Al2O3 and lowest SO3 contents, promoting the formation of hydrated calcium aluminates, by the pozzolanic action of the excess of alumina, consuming Ca(OH)2, which final content at 28 days was the lowest one, among the hydrated cements.

Acesse AQUI e confira o artigo.

Topo