area-restrita.png
e-mail-1.png

Numatsmail

27_03_pep_botao_facebook.jpg27_03_pep_botao_instagram.jpg27_03_pep_botao_facebook.jpg27_03_pep_botao_facebook.jpg

Autor(a/res): E. A. B. Koenders, W. Hansen, N. Ukrainczyk, R. D. Toledo Filho

Resumo: In this paper, results of a numerical study on pore continuity, permeability and durability of cementitious slurries for carbon sequestration projects are presented. The hydration model Hymostruc is used to simulate and visualize 3D virtual microstructures which are used to demonstrate the contribution of capillary pores to the continuity of the capillary pore system embedded in an evolving cementitious microstructure. Once capillary pores are blocked due to ongoing hydration, transport of CO2 species through the microstructure is avoided which may protect the slurry from leakage. Evaluating the pore continuity of the capillary pore system during hydration of the microstructure is therefore indispensable for a robust cementitious sealing material and is the main objective for slurry design. Simulations are conducted on slurries exposed to ambient temperatures of 20 °C, 40 °C, and 60 °C, and a durability outlook regarding the CO2 ingress is given as well. Aggregates and associated interfacial transition zones (ITZs) are introduced in the slurry system that may cause alternative porous path ways through the system. Pore continuity analysis shows the relevance of numerical simulations for assessing the capillary pore structure inside an evolving microstructure in relation to its sealing and durability performance.

Acesse AQUI e confira o artigo.

Autor(a/res): Adriana Martins, Flávio de Andrade Silva, Romildo Dias Toledo Filho

Resumo: The aim of this research is the development and mechanical characterization of self compacting soil cement composites with the incorporation of fly ash, metakaolin and sisal fibers. The mentioned composites, based on natural raw materials (raw earth and vegetable fibers), which are abundant in nature and have low cost and low environmental impact could be used as a more sustainable alternative than conventional industrialized materials for applications that don't require high structural performance (minimum strength equals to 2 MPa). A residual soil, constituted by 35% of fines and 65% of granular material was selected and the matrix was designed using a computational routine, based on the compressible packing model (CPM). The rheology of the matrix was adjusted by the slump flow test having as a target the spreading value of 600 mm. The matrix presented uniaxial compression strength of about 3.3 MPa after 28 days of curing. After 240 days of curing it was noticed an increase in the compressive strength to 7.5 MPa. This can be traced back to the pozzolanic reactions that takes place in the system. The soil cement composites were produced with three different sisal fiber contents: 0.5, 1.0 and 1.5% (in relation to the weight of dry soil) and a fiber length (Le) of 20 mm. Under compression, the incorporation of fibers has significantly influenced the post-peak behavior, increasing the toughness and the strain capacity. Under four point bending loading, the presence of fibers have contributed to increase the peak strength and the residual strength with expressive gains of toughness. The composites presented strength values as high as 1.8 MPa (1.0% of fibers) when they were subjected to bending loads. The use of sisal fibers as reinforcement modified the fracture mechanisms of the composites, changing it from a brittle to a ductile behavior.

Acesse AQUI e confira o artigo.

Autor(a/res): Alex Neves Junior, Romildo Dias Toledo Filho, Jo Dweck, Eduardo de Moraes Rego Fairbairn

Resumo: After submitted to early age carbonation curing, mechanical and physical properties of high initial strength sulfate resistant Portland cement (HS SR PC) pastes were investigated, which were compared to those of non-carbonated reference pastes. Carbonation was performed for 1 and 24 hours, at the best conditions of CO2 capturing, previously determined by the authors. Despite the compressive strength and elastic modulus of the 1h carbonated pastes were slightly higher than those of the reference pastes, their absorbed water content and porosity was slightly higher than that of the reference. In the case of 24h carbonation, its compressive strength decreases significantly because of its much higher porosity, although the new solid carbonated calcium silicate phase presents a much higher specific mass than those of the solid phases of the 1 hour and non-carbonated pastes.

Acesse AQUI e confira o artigo.

Autor(a/res): Dimas Alan Strauss Rambo, Flávio de Andrade Silva, Romildo Dias Toledo Filho

Resumo: This work presents the preliminary results of an experimental investigation on the mechanical behavior of self-consolidating concrete reinforced with hybrid steel fibers in the material and structural scale. Straight and hooked end steel fibers with different lengths and diameters were used as reinforcement in fiber volume fractions of 1.0 and 1.5%. In the fresh state the concrete was characterized using the slump flow, L-box and V-funnel tests. To determine the effect of the hybrid reinforcement on the plastic viscosity and shear yield stress a parallel plate rheometer was used. Following, the mechanical response was measured under tension and bending tests. In the flexural test, the movement of the neutral axis was experimentally determined by strain-gages attached to compression and tensile surfaces. Furthermore, the mechanical response of the material under bi-axial bending was addressed using the round panel test. During the test the crack opening was measured using three linear variable differential transformers (LVDT’s). The cracking mechanisms were discussed and compared to that obtained under four point bending and direct tension. The obtained results indicated that the fiber hybridization improved the behavior of the composites for low strain and displacement levels increasing the serviceability limit state of the same through the control of the crack width. For large displacement levels the use of the longer fibers led to a higher toughness but with an expressive crack opening. Due to its structural redundancy the round panel test allowed the formation of a multiple cracking pattern which was not observed in the four point beam tests. Finally, the obtained material’s properties were used in a nonlinear finite element model to simulate the round panel test. The simulation reasonably agreed with the experimental test data.

Acesse AQUI e confira o artigo.

Autor(a/res): Luciane Ribas, Guilherme C. Cordeiro, Romildo D. Toledo Filho, Luís Marcelo Tavares

Resumo: Characterizing the response of individual particles to stresses is of great relevance in a number of fields. In the field of grinding, important advances in mill modeling by decoupling material from machine contributions to the outcome of the process have been made in recent years that require direct information on the distribution of strengths of particles being ground. Although a number of methods and experimental devices have been proposed to measure the breakage strength of individual particles, only recently alternatives have become commercially available for testing particles in the fine size range. The paper demonstrates that a micro compression testing machine allows measuring the distribution of strengths and fracture energies of non-spherical fine particles, although great care should be taken while doing the measurements. It then shows that the mean strength of particles contained in a narrow size range is closely related to the rate of breakage of particles in the same size range in a planetary ball mill, thus demonstrating the validity of the measurements.

Acesse AQUI e confira o artigo.

Topo